Let me be up front: this post will contain statistics. Not the fun, pithy kind like “60 percent of statistics are made up on the spot,” but actual cold, hard statistical practices.
Joking aside, I’m going to run through some fairly high-level statistical analysis practices that you can employ every day to help make sense of your marketing data, allowing better strategic decisions. And it won’t be painful at all, I promise.
“But I do this already. I’m always analysing my data!” I hear you say incredulously.
This is probably very true — most users of web analytics (Google Analytics, Omniture, et al.) instinctively apply what would formally be known as “descriptive statistics.”
For example, you readily identify a spike or a drop in your daily traffic by “eyeballing” a chart; you use averages to quickly assess performance; and you do all sorts of comparisons that help you understand what is happening (and importantly, what you need to do next).
Although a loose adherence to the general principles is fine and workable, I strongly believe that an element of rigour can help take your analysis to the next level. Below, I’ll run through a couple of concepts tied to real-world examples that will hopefully convince you that this is an approach you should be considering.
Variance & Standard Deviation
Every set of data has a number of “characteristics” which, when understood, tell you lots about what has happened and what behavior you can expect in the future. One of the major characteristics is the dispersion of data points (i.e., how spread out and different from one another the measurements tend to be).
The formal measure of this is standard deviation (SD), which is derived from its partner metric, variance (σ2). As you’d guess from the names, informally these just represent how much that data can be expected to deviate, and how much it varies. But by utilizing the exact nature of the formal properties, you can do all sorts of fun useful stuff.
The SD is calculated by taking the square root of the variance. To calculate the variance, we just:
Work out the average (mean) of your set of results.
For each measurement you have, subtract the average worked out in step 1, then square the resulting figure. Note each one down.
Add all the numbers you noted when carrying out step two, and voila! The result is your variance.
For each measurement you have, subtract the average worked out in step 1, then square the resulting figure. Note each one down.
Add all the numbers you noted when carrying out step two, and voila! The result is your variance.
No comments:
Post a Comment